#contents We generated good matrices in Jennifer Seberry's research. We can generated good matrices of even order. * define [#n416bd60] A,B,C,D:four (1,-1) matrices,order m. + NM^T=MN^T (N,M in A,B,C,D) + AA^T+BB^T+CC^T+DD^T=4mI + (A-I)^T=-(A-I),B^T=B,C^T=C,D^T=D If A,B,C,D with all properties , then will be called good matrices. * good matrices [#n416bd60] good matrices of even order are as follows: |order|a|b|c|d| |order|A|B|C|D| |2|&ref(good_2_a.txt,,,data);|&ref(good_2_b.txt,,,data);|&ref(good_2_c.txt,,,data);|&ref(good_2_d.txt,,,data);| |4|&ref(good_4_a.txt,,,data);|&ref(good_4_b.txt,,,data);|&ref(good_4_c.txt,,,data);|&ref(good_4_d.txt,,,data);| |6|&ref(good_6_a.txt,,,data);|&ref(good_6_b.txt,,,data);|&ref(good_6_c.txt,,,data);|&ref(good_6_d.txt,,,data);| |8|&ref(good_8_a.txt,,,data);|&ref(good_8_b.txt,,,data);|&ref(good_8_c.txt,,,data);|&ref(good_8_d.txt,,,data);| * reference [#n416bd60] Jennifer Seberry:「Wiliamson matrices of even order」Combinatorial Mathematics vol.403 Lecture Notes in Mathematics,Springer-Verlag,pp.132-142,1974 http://www.uow.edu.au/~jennie/WEB/WEB69-93/max/037_1974.pdf * author [#n416bd60] Takumi Watanabe 2013 2/15